【我们这十年@坐标中国】中国速度,让奇迹不断发生******
中新网北京10月12日电题:中国速度,让奇迹不断发生
记者 李金磊
有一种速度叫中国速度,有一种效率是中国效率。这十年,中国速度一次次惊艳世界。
时速600公里的高速磁浮交通系统,使2000公里范围4小时通达,中国人的出行是贴地飞行、御风而行。
眼睛一闭一睁,9小时改造一座火车站,8小时拆完589米立交桥,“基建狂魔”让不可能变为可能,让世界首富埃隆•马斯克也伸出大拇指点赞。
……
如果要列举中国速度的“名场面”,可谓俯拾即是。中国速度展现了中国经济社会发展的日新月异,展现了综合国力和民族自信的与日俱增。
中国速度,是中国大力推动创新的生动写照。
这十年,中国持续实施创新驱动发展战略,科技实力显著增强,创新能力迈上新台阶,科技引领力不断增强,工艺工装持续创新,让中国速度不断提速、提速再提速。
从时速400公里的高铁,跨越到时速600公里的高速磁浮,这背后是加速能力、制动能力、抗噪能力等控制策略创新设计的支撑。没有自主创新,就突破不了限制和瓶颈,实现不了中国速度的跃升。
被誉为“煤海蛟龙”的掘支运一体化快速掘进系统,依靠科技创新“挖”出了世界纪录,实现了中国巷道掘进技术与装备从“跟跑”到“并跑”再到 “领跑”的转变。没有自主创新,就难以保障中国能源安全。
中国速度,是中国人民携手奋进的鲜明例证。
中国速度为什么能这么快?这离不开中国人民的辛勤付出和奋勇拼搏。
在东南沿海,“基建狂魔”集结两万多名建设者,建成55千米长的港珠澳大桥,世界最长的跨海大桥才得以横空出世。
面对589米要拆除的立交桥,央企的建设者们派出了200余台挖掘机同时作业,在桥两侧一字排开的挖掘机伸出长臂,就如一只只蚂蚁,努力啃食钢筋水泥,一夜之间就让这个庞然大物消失。
不疯魔不成活。正是有赖于无数建设者、劳动者夜以继日、兢兢业业的付出,才能成就中国速度。正是亿万人民的奋勇拼搏,汇聚出磅礴的中国力量,才能让世界为中国速度叹服。
中国速度,是中国制度优越性的形象印证。
中国速度,也充分彰显了中国特色社会主义制度集中力量办大事的显著优势。
面对新冠肺炎疫情,中国展现出非凡的组织动员能力、统筹协调能力、贯彻执行能力,仅仅用10天就建成了火神山医院,12天建成了雷神山医院。
一方有难,八方支援。面对自然灾害,在高效的组织下,中国会用最快的救援速度来最大限度保护人民群众生命财产安全。
“乘风好去,长空万里,直下看山河。”中国速度的背后,是一个不断创新、奋进的中国。在大国建设者一往无前的努力下,中国速度将继续创造一个又一个新的奇迹。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) 中国网客户端 国家重点新闻网站,9语种权威发布 |